Effective Improvement for Depth Estimated Based on Defocus Images

نویسندگان

  • Hao Wang
  • Fengyun Cao
  • Shuai Fang
  • Yang Cao
  • Chunlong Fang
چکیده

This paper introduces a new concept called controllable ring signature which is ring signature with additional properties as follow. (1) Anonymous identification: by an anonymous identification protocol, the real signer can anonymously prove his authorship of the ring signature to the verifier. And this proof is non-transferable. (2) Linkable signature: the real signer can generate an anonymous signature such that every one can verify whether both this anonymous signature and the ring signature are generated by the same anonymous signer. (3) Convertibility: the real signer can convert a ring signature into an ordinary signature by revealing the secret information about the ring signature. These additional properties can fully ensure the interests of the real signer. Especially, compared with a standard ring signature, a controllable ring signature is more suitable for the classic application of leaking secrets. We construct a controllable ring signature scheme which is provably secure according to the formal definition. As an application, we design a E-prosecution scheme based on this controllable ring signature scheme and show its security.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Planelet Transform: A New Geometrical Wavelet for Compression of Kinect-like Depth Images

With the advent of cheap indoor RGB-D sensors, proper representation of piecewise planar depth images is crucial toward an effective compression method. Although there exist geometrical wavelets for optimal representation of piecewise constant and piecewise linear images (i.e. wedgelets and platelets), an adaptation to piecewise linear fractional functions which correspond to depth variation ov...

متن کامل

Evolving Measurement Regions for Depth from Defocus

Depth from defocus (DFD) is a 3D recovery method based on estimating the amount of defocus induced by finite lens apertures. Given two images with different camera settings, the problem is to measure the resulting differences in defocus across the image, and to estimate a depth based on these blur differences. Most methods assume that the scene depth map is locally smooth, and this leads to ina...

متن کامل

Novel diffusion based techniques for depth estimation and image restoration from defocused images

An intrinsic property of real aperture based imaging is the blurring of an observation due to defocus. There are two major aspects related to the defocus blur present in the image. The first aspect is based on use of the defocus blur for estimating the depth in the scene. The other aspect relates to restoration of the image. This problem manifests itself as a challenging blind, space varying de...

متن کامل

Monocular 3D Scene Reconstruction at Absolute Scales by Combination of Geometric and Real-Aperture Methods

We propose a method for combining geometric and realaperture methods for monocular 3D reconstruction of static scenes at absolute scales. Our algorithm relies on a sequence of images of the object acquired by a monocular camera of fixed focal setting from different viewpoints. Object features are tracked over a range of distances from the camera with a small depth of field, leading to a varying...

متن کامل

Simultaneous Computation of Defocus Blur and Apparent Shifts in Spatial Domain

This paper presents an algorithm for a cooperative and simultaneous estimation of depth cues: defocus blur and spatial shifts (stereo disparities, 2D motion, and/or zooming disparities). These cues are estimated from two images of the same scene acquired by a camera evolving in time and/or space and for which the intrinsic parameters are known. This algorithm is based on generalized moment expa...

متن کامل

Nanoscale depth reconstruction from defocus: within an optical diffraction model.

Depth from defocus (DFD) based on optical methods is an effective method for depth reconstruction from 2D optical images. However, due to optical diffraction, optical path deviation occurs, which results in blurring imaging. Blurring, in turn, results in inaccurate depth reconstructions using DFD. In this paper, a nanoscale depth reconstruction method using defocus with optical diffraction is p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013